

Pathogenesis and Mechanism of Action of Inflammatory Neuropathies

Pathogenic processes significant to inflammatory neuropathies

 There are common pathogenic processes involved in acute and chronic inflammatory immune neuropathies:

Axonal dysfunction	 Axonal dysfunction causes alterations in impulse propagation at the Nodes of Ranvier which slows / blocks conduction Changes in conduction results in transient weakness which can be reversible with treatment; however, may lead to axonal degeneration
Demyelination	 Leads to dysfunction at inter- / para- nodes affecting conduction Transient weakness can be reversible with treatment; may lead to permanent axonal damage
Axonal structural damage	 If axonal degeneration occurs, it is less amenable to treatment and is more likely to cause permanent disability
	Dawking

exchange

Temporal evolution of disease: The GBS to CIDP continuum

 It is currently unclear what causes acute or chronic forms of disease

POLYNEURO

exchange

Current understanding of GBS pathogenesis¹

- At least 2 GBS variants have a complement-mediated stage where a membrane-attack complex (MAC) is formed
- Acute motor axonal neuropathy (AMAN)

IgG anti-GM1 / GD1a auto-antibodies bind to membrane antigens leading to MAC formation

- Sodium channel clusters are disrupted or disappear at lengthened nodes in addition to the disruption of paranodal junctions²
- This disruption may result in myelin detachment² leading to nerveconduction failure, muscle weakness, and possibly axonal degeneration. Macrophages subsequently invade and scavenge injured axons

Acute inflammatory demyelinating polyneuropathy (AIDP)
 Auto-antibodies bind to unidentified myelin antigens and activate complement. MAC forms on outer surface of Schwann cells and initiates vesicular degeneration. Macrophages later scavenge myelin debris

GBS: Guillain-Barré Syndrome, GD: ganglioside GD1, GM: ganglioside GM1, IgG: immunoglobulin G, MAC: membrane-attack complex, MoA: mechanism of action

POLYNFIIRO

^{1.} Yuki N, Hartung H-P. NEJM 2012;366:2294-304

^{2.} Susuki K et al. J Neurosci 2007;27:3956-3967

Current understanding of CIDP pathogenesis¹

- May be caused by abnormal immune response mediated by lymphocytes and macrophages, in addition to auto-antibodies and complement
- In CIDP patients:
 - Pro-inflammatory and regulatory cytokines elevated in the CSF
 - Serum TNF- α levels are raised correlate with disease activity
 - Activated T-cells, mainly CD4⁺ increased in the circulation
 - Antigen-driven, major histocompatibility complex class I restricted, CD8⁺ T-cellmediated attack²
- T-cells may activate residing macrophages, leading to:
 - Enhanced phagocytosis
 - Production of pro-inflammatory molecules, e.g.:
 - Reactive oxygen species
 - Proteases
 - Pro-inflammatory cytokines
- Auto-antibodies may contribute to disease process by complement activation or antibody-dependent cellular toxicity

CIDP: chronic inflammatory demyelinating polyneuropathy, CSF: cerebral spinal fluid, MoA: mechanism of action, TNF: tumor necrosis factor

- 1. Lehmann HC, Hartung H-P. J Neuroimmunol 2011;231:61-69
- 2. Schneider-Hohendorf T, et al. Neurology 2012;78:402-408

Current understanding of MMN pathogenesis

- In up to 60% of MMN patients, antibodies against gangliosides including GM1 are present¹
- Antibodies may bind to GM1 and cause disruption of ion channel clusters, which leads to conduction block;² a defining physiologic feature of this disease
- The resultant progressive axonal damage may lead to progressive axonal loss and permanent disability²

CIDP: chronic inflammatory demyelinating polyneuropathy, GBS: Guillain-Barré syndrome, GD1a/b: ganglioside GD1a/GD-1b, GM1: ganglioside GM1, MoA: mechanism of action, MMN: multifocal motor neuropathy

- 1. Lehmann HC, Hartung H-P. J Neuroimmunol 2011;231:61-69
- 2. Vlam L et al. Nat Rev 2012:8:48-58

Acute and chronic immune-mediated neuropathies

AIDP: acute inflammatory demyelinating polyneuropathy, CANOMAD: chronic ataxic neuropathy, CIDP: chronic inflammatory demyelinating polyneuropathy, GM1: ganglioside GM1, GQ1b: ganglioside GQ1b, MMN: multifocal motor neuropathy, SAN: sensory ataxic neuropathy

Gangliosides and disease pathogenesis

- Gangliosides are a group of glycosphingolipids widely distributed in membrane components of the nervous system¹
- Auto-antibodies targeting gangliosides can be associated with clinical symptoms that imply selective nerve damage²

Auto-antibody	Neuropathy	Syndrome
GM1	Multifocal or lower motor	MMN, AMAN, AIDP, CIDP
Asialo-GM1	Motor and sensorimotor	AIDP
GD1a	Motor and sensorimotor	AIDP, AMAN
GD1b	Sensory w/ or w/o ataxia	SAN, ASAN, CANOMAD
GQ1b	Motor and sensorimotor	Fisher, ASAN, CANOMAD

AIDP: acute inflammatory demyelinating polyneuropathy, AMAN: acute motor axonal neuropathy, ASAN: acute sensory ataxic neuropathy, CANOMAD: chronic ataxic neuropathy, CIDP: chronic inflammatory demyelinating polyneuropathy, GD1: ganglioside GD1, GM1: ganglioside GM1, GQ1b: ganglioside GQ1b, MMN: multifocal motor neuropathy, SAN: sensory ataxic neuropathy

- 1. Neuropathy associated antibodies: <u>http://www.clinlabnavigator.com/neuropathy-associated-antibodies.html</u> Accessed May 2013
- 2. Gong Y, et al. Brain 2002;125:2491-2506

POLYNEURO

exchange

Current understanding of Plasma exchange MoA¹

- Plasma exchange (PE) removes:
 - Auto-antibodies
 - Cytokines
 - Complement
 - Unknown humoral factors that alter lymphocyte function
- The result is:
 - Improvement of axonal functions
 - Reduced nerve injury through decreased complement attack and axonal damage
 - Clinical improvement compared to no treatment

PE: plasma exchange, MoA: mechanism of action 1. Lehmann HC, Hartung H-P. J Neuroimmunol 2011;231:61-69

Adapted from ref¹

Current understanding of IgG MoA

- IgG is thought to act by:^{1,2}
 - Neutralizing pathogenic autoantibodies
 - Inhibiting auto-antibody-mediated complement activation
 - Altering FcR expression and redressing altered cytokine patterns
- The result is:¹
 - Improvement of axonal functions
 - Reduced nerve injury through decreased complement attack and axonal damage
 - Faster clinical improvement compared with no treatment

FcR: fragment crystallizable receptor, IgG: immunoglobulin G, MoA: mechanism of action

- 1. Yuki N, Hartung H-P. NEJM 2012;366:2294-304
- 2. Lehmann HC, Hartung H-P. J Neuroimmunol 2011;231:61-69

Adapted from ref²

Additional thoughts

- MMN must be distinguished from other degenerative motor neuron diseases and CIDP due to differences in prognosis and therapy
 - Certain therapies may exacerbate weakness in MMN patients
- Increasing evidence suggests that IgM antibodies to GM1 are biomarkers for MMN
- As GM1 is only found in up to 80% of patients, there may be antibodies of other specificities that perform a similar function
 - Sensitivity of current assays may affect antibody detection